top of page

PUBLICATIONS

Please check out our Google Scholar page for the most up-to-date information. In addition, please check out Kurtis' CV for details on manuscripts in preparation and manuscripts in review. 

 

‡equal contribution.

(24) Oh, J.; Zheng, S.-L.; Carsch, K. M.; Latendresse, T. P.; Casaday, C. E.; Campbell, B. M.; Betley, T. A. An Open-Shell Fe(IV) Nitrido. J. Am. Chem. Soc. 2025, ASAP.

                 

(23) Zheng, S.-L.; Litak, N. P.; Campbell, M. G.; Handford, R. C.; Dilek, D. K.; Carsch. K. M.; Betley, T. A. Integrating Fundamental Concepts with Practical Skills: Transforming Small-Molecule Crystallography Education. J. Appl. Crystallogr. 2025, 58, 1–7.

 

(22) Juda, C.; Casaday, C.; Teesdale, J.; Bartholomew, A.; Lin, B.; Carsch, K. M.; Musgrave, R.; Zheng, S-L.; Wang, X.; Hoffmann, C.; Wang, S.-Y.; Chen, Y.S.; Betley, T.A. Composition Determination of Heterometallic Trinuclear Clusters via Anomalous X-Ray and Neutron Diffraction. J. Am. Chem. Soc. 2024, 146, 30320–30331.

                 

(21) Rohde, R. C.†; Carsch, K. M.†; Dods, M. N.; Jiang, H. Z. H.; McIsaac, A. R.; Klein, R. A.; Kwon, H.; Karstens, S. L.; Wang, Y.; Huang, A. J.; Taylor, J. W.; Yabuuchi, Y.; Tkachenko, N. V.; Meihaus, K. R.; Furukawa, H.; Yanhe, D. R.; Engler, K. E.; Bustillo, K. C.; Minor, A. M.; Reimer, J. A.; Head-Gordon, M.; Brown, C. M.; Long. J. R. High-Temperature Carbon Dioxide Capture in a Porous Material with Terminal Zinc Hydride Sites. Science 2024, 386, 814–819.

• Media Coverage: “Heat up to catch carbon” Science

       “This MOF is hot to go” C&EN Chemical & Engineering News

        “Breakthrough in capturing 'hot' CO2 from industrial exhaust” Berkeley News, ChemEurope

        “Breakthrough in capturing 'hot' CO2 from exhaust” AAAS, Mirage, Science Daily, Tiisys [Japanese]

        “UC Berkeley chemists discover method to capture CO2 at high temperatures” The Daily Californian

        “UC Berkeley scientists unveil breakthrough ‘hot’ CO2 capture technology” The University Network

         “Metal–organic framework captures carbon dioxide at industrially relevant temperatures” ChemistryWorld

        “Scientists develop new material that could help solve major issue in Earth's atmosphere” The Cool Down

        “Scientists develop breakthrough technology for high-temperature CO2 capture” The Pinnacle Gazette

        “Carbon removal at extreme temperatures: porous material can capture 'hot' CO₂” Decarbonfuse

        “Reaction activation energy high? It’s okay. High has its perks” X-MOL [Mandarin]

        “New material captures carbon dioxide from super-hot industrial exhaust” Knowridge

        “Capturing hot carbon dioxide from industry for storage and reuse” Pump Industry

        “Metal–organic framework to catch hot CO2 from flue gas” Chemistry & Industry

        “This sponge captures CO2 as it leaves factories” Futura Sciences [French]

        “MOF captures hot CO2 from industrial exhaust streams” The Engineer

        “Carsch research shows new frontiers in carbon capture” UT Austin

        “CO2 capture at high temperatures using MOFs” Chem Station [Japanese]

        “Molecules of the Year 2024” C&EN Chemical & Engineering News

        “Now that’s some hot carbon capture” COSMOS

         NIKKEI, Inc., In Press

 

(20) Tkachenko, N. V.; Yabuuchi, Y.; Carsch, K. M.; Furukawa, H.; Long, J. R.; Head-Gordon, M. Computational Optimization of Room Temperature Usable Capacity for Hydrogen Storage in MFU-4-Type Metal–Organic Frameworks via Pairwise Metal Substitutions. J. Phys. Chem. C 2025, 129, 167–178.

                 

(19) Yabuuchi, Y.; Furukawa, H; Carsch, K. M.; Klein, R.A.; Tkachenko, N. V.; Huang, A. J.; Cheng, Y.; Taddei, K. M.; Novak, E.; Brown, C. M.; Head-Gordon, M.; Long, J. R. Geometric Tuning of Coordinatively Unsaturated Copper(I) Sites in Metal−Organic Frameworks for Ambient-Temperature Hydrogen Storage. J. Am. Chem. Soc. 2024, 146, 22759–22776.

                 

(18) Carsch, K. M.; Huang, A. J.; Dods, M. N.; Parker, S. T.; Rohde, R. C.; Jiang, H. Z. H.; Yabuuchi, Y.; Kwon, H.; Karstens, S. L.; Chakraborty, R.; Bustillo, K. C. Meihaus, K. R.; Furukawa, H.; Minor, A. M.; Head-Gordon, M.; Long. J. R. Oxygen-Selective Adsorption from Air with a Metal–Organic Framework Featuring Open Copper Sites. J. Am. Chem. Soc. 2024, 146, 3160–3170.

                 

(17) Chakraborty, R.; Talbot, J. J.; Shen, H.; Yabuuchi, Y.; Carsch, K. M.; Jiang, H. Z. H.; Furukawa, H.; Long, J. R.; Head-Gordon, M. Quantum Chemical Modeling of Single and Multiple Hydrogen Binding in MOFs: Validation, Insight, Predictions, and Challenges. Phys. Chem. Chem. Phys. 2024, 26, 6490–6511.

 

(16) Carsch, K. M.; North, S.; DiMucci, I. M.; Iliescu, A.; Vojackova, P.; Cundari, T. R.; Lancaster, K. M.; Betley, T. A. Nitrene Transfer from a Sterically Confined Copper Complex. Chem. Sci. 2023, 14, 10847–10860.

 

(15) Funke, L. M.; Chakraborty, R.; Carsch, K. M.; Head-Gordon, M.; Long, J. R.; Reimer, J. A. Assessment of Adsorbate π-backbonding in Copper(I) Metal–Organic Frameworks via Multinuclear NMR Spectroscopy and Density Functional Theory Calculations. J. Phys. Chem. C 2023, 127, 7513–7519.

 

(14) Chakraborty, R.; Carsch, K. M.; Jaramillo, D. E.; Yabuuchi, Y.; Furukawa, H.; Long, J. R.; Head-Gordon, M. Prediction of Multiple Hydrogen Ligation at a Vanadium(II) Site in a Metal–Organic Framework. J. Phys. Chem. Lett. 2022, 13, 10471–10478.

 

(13) Carsch, K. M.†; Iliescu, A.†; McGillicuddy, R. D.; Mason, J. A.; Betley, T. A. Reversible Scavenging of Dioxygen from Air by a Copper Complex. J. Am. Chem. Soc. 2021, 143, 18346–18352.

 

(12) Carsch, K. M.; Ho, W.; Lui, K. H.; Valtierra, G.; Dogutan, D. L.; Nocera, D. G.; Zheng, S.-L. The Crystal Structure of the RuPhos Ligand. Acta Crystallogr. E 2021, 77, 171–174.

• Media Coverage: “Chem-145 undergraduates publish papers on novel crystals” Harvard Chemistry and

         Chemical Biology. Prepared Fall 2020 (CHEM145, experimental inorganic chemistry).

 

(11) Carsch, K. M.; Elder, S. E.; Dogutan, D. K.; Nocera, D. G.; Yang, J.; Zheng, S.-L.; Daniel, T.; Betley, T. A. Syntheses and Solid-state Structures of Two Cofacial (bis)dipyrrin Dichromium Complexes in Different Charge States. Acta Crystallogr. C 2021, 77, 161–166.

 • Media Coverage: “Chem-145 undergraduates publish papers on novel crystals” Harvard Chemistry and

         Chemical Biology. Prepared Fall 2020 (CHEM145, experimental inorganic chemistry).

 

(10) Carsch, K. M.; DiMucci, I. M.; Lukens, J. T.; Iovan, D.A.; Zheng, S.-L.; Lancaster, K. M.; Betley, T. A. Electronic Structures and Reactivity Profiles of Aryl Nitrenoid−Bridged Dicopper Complexes. J. Am. Chem. Soc. 2020, 142, 2264–2276.

 

(9) DiMucci, I. M.†; Lukens, J. T.†; Chatterjee, S.†; Carsch, K. M.; Titus, C. J.; Lee, S. J.; Nordlund, D.; Betley, T. A.; MacMillan, S. N.; Lancaster, K. M. The Myth of d8 Cu(III). J. Am. Chem. Soc. 2019, 141, 18508–18520.

• Media Coverage: “Credit ligands for copper-complex chemistry” C&EN Chemical & Engineering News

        “Copper comeuppance” Nature Chemistry Reviews

 

(8) Carsch, K. M.; DiMucci, I. M.; Iovan, D. A.; Li, A.; Zheng, S.-L.; Titus, C. J.; Lee, S. J.; Irwin, K. D.; Nordlund, D.; Lancaster, K. M.; Betley, T. A. Synthesis of a Copper-Supported Triplet Nitrene Complex Pertinent to Copper-Catalyzed Amination. Science 2019, 365, 1138–1143.

• Media Coverage: “Break it up” Harvard Chemistry and Chemical Biology News

         “How an elusive catalyst makes unusual reactions happen” Harvard Gazette

         “Discovered architecture of a copper-nitrenoid complex could revolutionize synthesis” Phys, ScienceDaily,

         “Discovered architecture of a copper-nitrenoid complex could revolutionize synthesis” LongRoom

         “Big Game Hunting for a More Versatile Catalyst” 7th Space, TechSite

         “Missing electrons reveal the true face of a new copper-based catalyst” CornellChronicle, ScienceDaily,

         “Missing electrons reveal the true face of a new copper-based catalyst” Newswise, LongRoom

         “Metalloenzyme mastery” ChemistryWorld

 

(7) Lionetti, D.; Suseno, S.; Tsui, E.Y.; Lu, L.; Stich, T. A.; Carsch, K. M.; Nielsen, R. J.; Goddard, A. W.; Britt, R. D.; Agapie, T. Effects of Lewis Acidic Metal Ions (M) on Oxygen-Atom Transfer Reactivity of Heterometallic Mn3MO4 Cubane and Fe3MO(OH) and Mn3MO(OH) Clusters. Inorg. Chem. 2019, 58, 2236–2245.

 

(6) Carsch, K. M.; de Ruiter, G.; Agapie, T. Intramolecular C−H and C−F Bond Oxygenation by Site-Differentiated Tetranuclear Manganese Models of the OEC. Inorg. Chem. 2017, 7, 9044–9054.

 

(5) de Ruiter, G.; Carsch, K. M.; Takase, M., Agapie, T. Selectivity of C−H vs. C−F Bond Oxygenation by Homo- and Hetero-metallic Fe4, Fe3Mn, and Mn4 Clusters. Chem. Eur. J. 2017, 23, 10744–10748.

 

(4) de Ruiter, G.†; Carsch, K. M.†; Gul, S.; Chatterjee, R.; Thompson. N. B.; Takase, M. K.; Yano, J.; Agapie, T. Accelerated Oxygen Atom Transfer and C–H Bond Oxygenation by Remote Redox Changes in Fe3Mn-Iodosobenzene Adducts. Angew. Chem. Int. Ed. 2017, 56, 4772–4776.

(3) Kanady, J. S.; Lin, P. L.; Carsch, K. M.; Nielsen, R.J.; Takase, M.K.; Goddard, W.A.; Agapie, T. Toward Models for the Full Oxygen-Evolving Complex of Photosystem II by Ligand Coordination to Lower the Symmetry of the Mn3CaO4 Cubane: Demonstration that Electronic Effects Facilitate Binding of a Fifth Metal. J. Am. Chem. Soc. 2014, 136, 14373–14376.

 

(2) Jiajun, M.; Carsch, K. M.; Freitag, C. R.; Gunnoe, T. B.; Cundari, T. R. Variable Pathways for Oxygen Atom Insertion into Metal–Carbon Bonds. J. Am. Chem. Soc. 2012, 135, 424–437.

 

(1) Carsch, K. M.; Cundari, T. R. DFT Modeling of a Methane-to-Methanol Catalytic Cycle Via Group 6 Organo-metallics. Comp. Theor. Chem. 2012, 980, 133–137.

• Media Coverage: “Teen Finding Ways to Cut Energy Costs” NBC Dallas Fort Worth (NBCDFW) News

PATENTS

(4) Kurtis M. Carsch, Rachel C. Rohde, Jeffrey R. Long. Isothermal π-Acid Separation with Porous Materials. US Provisional Patent Application filing in progress.

(3) Kurtis M. Carsch, Jesse L. Peltier, J. Börgel, Jeffrey R. Long. Selective Carbon Monoxide Uptake by Porous Materials with Metal Carbanions. US Provisional Patent 63/516,154 filed on June 13, 2023.

(2) Kurtis M. Carsch, Jeffrey R. Long. Direct Capture of Oxygen from Air with Porous Materials. US Provisional Patent 63/460,810 filed on April 20, 2023.

(1) Rachel C. Rohde, Kurtis M. Carsch, Jeffrey R. Long. Acidic Gas Capture through Metal–Ligand Insertion in Porous Materials at Elevated Temperatures. US Provisional Patent 63/477,976 filed on December 30, 2022.

bottom of page